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ABSTRACT

The growing power and capacity of supercomputers enable scien-
tific simulations at extreme scale, leading to not only more accurate
modeling and greater predictive ability but also massive quantities
of data to analyze. New approaches to data analysis and visualiza-
tion are thus needed to support interactive exploration through se-
lective data access for gaining insights into terabytes and petabytes
of data. In this paper, we present an in situ data processing method
for both generating probability distribution functions (PDFs) from
field data and reorganizing particle data using a single spatial orga-
nization scheme. This coupling between PDFs and particles allows
for the interactive post hoc exploration of both data types simulta-
neously. Scientists can explore trends in large-scale data through
the PDFs and subsequently extract desired particle subsets for fur-
ther analysis. We evaluate the usability of our in situ method using
a petascale combustion simulation and demonstrate the increases in
task efficiency and accuracy that the resulting workflow provides to
scientists.

Index Terms: G.3 [Mathematics of Computing]: Probability
and Statistics—Distribution Functions; H.3.2 [Information Sys-
tems]: Information Storage and Retrieval—Information Storage;
I.6.6 [Computing Methodologies]: Simulation and Modeling—
Simulation Output Analysis; J.2 [Computer Applications]: Phys-
ical Sciences and Engineering—Physics;

1 INTRODUCTION

The ever increasing computing power enables researchers to de-
velop extreme scale scientific simulations. Consequently, mas-
sive volumes of output are generated, reaching terabytes or even
petabytes of data. However, the speed of disk storage systems are
not keeping pace with the dramatically increased computing power.
The ever increasing gap between data generation and data acces-
sibility not only creates a bottleneck in simulation output, but also
poses a challenge to data analysis in post processing. Scientists
need to analyze their data to generate new insights but the standard
methods through which this is done are becoming too expensive.
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Data preprocessing is critical for more efficient subsequent data
visualization and analysis. Depending on the task, different data
layouts and indexing schemes can result in a huge performance dif-
ference. For example, laying out the data into a contiguous buffer
is beneficial for volume rendering [27], while indexing and sorting
the data based on its attributes can accelerate query based analy-
sis [19]. Due to the large size of data, loading the entire dataset
is no longer feasible. As a result, preparing the data for high level
exploration by summarization as well as for detailed analysis by se-
lective data access is crucial for post hoc data exploration. Some of
the preprocessing tasks are parallel in nature and can be performed
on a supercomputer.

On the other hand, a common trend to deal with such over-
whelming amounts of data is to deploy in situ visualization and
analysis [28, 22, 23, 3, 24]. Moving visualization and analysis in
situ is a promising strategy to harvest the difference between the
supreme computing power and the lack of I/O capability. Since the
results generated by visualization and analysis tasks are usually or-
ders of magnitude smaller than the raw simulation output, moving
such tasks in situ effectively mitigates the I/O bottleneck. The data
generated by in situ techniques should be compact, thus imposing
minimal I/O requirements to the simulations. Also, most of the
computing power should be reserved for the simulations, as a result
in situ techniques must have a minimal computation and memory
overhead.

The goal of this work is to perform data preprocessing in situ
in order to support more efficient post hoc visualization and analy-
sis. More specifically, we present an in situ data processing method
to reorganize the particle data according to a spatial organization
scheme. We also generate probability distribution functions (PDFs)
from scalar field data using the same spatial organization scheme.
Therefore, the PDFs effectively provide an overview of the particle
data. Utilizing such a coupling between PDFs and particles, a post
hoc interactive visualization tool was implemented to explore both
data types simultaneously. Scientists can then use the tool to selec-
tively extract the desired particle subsets without the need to access
the entire particle data. As a result, post hoc data exploration and
selective particle access is made more efficient by the in situ gener-
ated PDFs and reorganized particles.

Our tools come in the form of a set of in situ processing routines
as well as a post hoc visualization and analysis system. The in situ
methods are evaluated with multiple simulation runs on Lawrence
Berkeley National Laboratory’s NERSC computing facility. To test
our method, we integrate our tools into S3D, a large-scale direct
numerical simulation (DNS) code that models the turbulent nature
of combustion processes. For the post hoc visualization tool, we
demonstrate the usability by showing the improved efficiency and
accuracy of particle selection through a case study.

The remainder of the paper is organized as follows: We first
present background information including the traditional scientists’
workflow of particle selection in Section 2. Our proposed work-



flow is then presented in Section 3 along with the implementation
details of both the in situ processing methods and the post hoc visu-
alization tool. In Section 4, the in situ performance results and the
usability case study are presented.

2 BACKGROUND

The massive amounts of data generated by extreme scale scientific
applications present daunting challenges to researchers in a wide
variety of fields. In this section we present related work on in situ
processing and the use of PDFs for data analysis. In addition, we
provide some background information on the S3D combustion sim-
ulation, its applications, and the scientists’ prior workflow before
adopting our new techniques.

2.1 Related Work

In situ processing is becoming a popular technique in overcoming
the I/O barrier. Multiple overview papers of in situ visualization and
analysis have been presented. An earlier work by Ma et al. [15]
presented the challenges and opportunities of in situ visualization
due to the growing power of supercomputers. Ahern et al. [1] later
outlined a research roadmap for exascale computing and discussed
the pros and cons of in situ processing. Klasky et al. [11], in the
same year, gave an overview of the major problems with extreme
scale simulations. They then introduced a multipoint approach to
handle the presented problems, including service oriented architec-
ture and in situ processing. Childs et al. [6] categorized in situ
processing into co-processing, concurrent processing, and hybrid.
Major design principles involved with the solutions to the different
types of in situ processing are also described in detail. More specifi-
cally, co-processing means tightly coupled synchronous, which per-
forms visualization and analysis in the same process as simulations.
Concurrent processing means loosely coupled asynchronous stag-
ing, which moves processing tasks to staging nodes. Lastly, hybrid
means the combination of co-processing and concurrent process-
ing in the same scientific application. The in situ processing in this
paper falls in the category of co-processing.

Multiple tools, libraries, and frameworks have been developed
for in situ processing. Visualization applications such as ParaView
and VisIt provides easy to adapt libraries for the purpose of in situ
visualization, namely ParaView Catalyst [3] and VisIt Libsim [24].
For more general in situ processing needs, ADIOS [14] implements
service oriented architecture principle for data management to ease
the data communication between simulations and in situ process-
ing tools; Damaris [7] also provides simple to use APIs for in situ
processing and I/O by using dedicated cores or nodes.

One approach to hide the I/O bottleneck with in situ processing
is to perform data compression before outputting. ISOBAR [18]
was introduced as an asynchronous method by exploiting data ac-
cess patterns for more efficient data compression and I/O. Laksh-
minarasimhan et al. presented ISABELA [12], an error bounded in
situ compression algorithm for scientific data, which offers up to an
85% compression ratio by taking advantage of both spatial and tem-
poral coherence of the data. In situ compression can be considered
a less aggressive approach compared to other in situ visualization
and analysis techniques because original data can be extracted from
the compressed data.

Visualization techniques were the first to be adopted into in situ
processing [28]. Applications that generate static images in situ are
commonly used [3, 24]. A priori knowledge is usually required for
generating meaningful visualizations with such in situ applications.
To overcome these limitations, several approaches have been pro-
posed to enable more explorability of the in situ generated visual-
izations [22, 9, 2, 8, 4]. Such in situ visualization techniques output
additional information along with static images, therefore allowing
some limited exploration into the original data.

Feature extraction and tracking is a common analysis technique
to generate insights from massive scientific data. In situ feature
extraction and tracking has been studied in several works. Landge
et al. [13] used segmented merge trees to implement in situ feature
extraction.Ye et al. [26] introduced in situ depth maps to support
post hoc image based feature extraction and tracking. Woodring et
al. [25] performed in situ eddy analysis by thresholding the Okubo-
Weiss field for MPAS-Ocean climate simulation.

Data preprocessing, such as indexing, sorting, and statistical
sampling, has been performed in situ in multiple works. Kim et al.
[10] experimented with in situ bitmap indexing and pointed out the
challenges and opportunities of parallel index creation and parallel
query operations. Su et al. [20] later extended in situ bitmaps gener-
ation for scientific simulation data. They demonstrated the usability
of bitmaps with online time step selections using multiple metrics
(earth mover’s distance and conditional entropy) and offline corre-
lation mining. Zheng et al. [29] presented a concurrent processing
approach to prepare data before it reaches storage. They described
the importance of data preprocessing and demonstrated their tech-
nique with bitmap indexing, sorting, and 1D/2D histogram (PDF)
generation. Our approach uses co-processing instead of concurrent
processing, and we generate regional PDFs (instead of global his-
tograms) to support post hoc visualization and analysis.

The use of histograms has also been studied in various areas.
Novotny et al. [17] utilized histograms to generate parallel co-
ordinates in real time for interactive exploration of large datasets.
Thompson et al. [21] used hixels (1D histograms) to represent ei-
ther a collection of values in a block of data or collections of values
at a location in ensemble data. They demonstrated that topolog-
ical analysis and uncertainty visualization can be performed with
hixels. Neuroth et al. [16] generated spatially organized velocity
histograms both on-the-fly and in situ for interactive visualization
and exploration of the underlying data. Our technique generates
multidimensional PDFs (histograms). We compare the accuracy
gained from generating PDFs from scalar field data instead of par-
ticle data. Furthermore, we demonstrate the usability of our tech-
nique by showing the improved efficiency and accuracy of particle
filtering and selecting through a practical case study.

2.2 The S3D Simulation and Current Workflow

While the techniques presented in this paper can apply to large va-
riety of large-scale simulations, we primarily evaluate our system
using case studies in the field of combustion. Specifically, we in-
tegrate our tools into S3D [5], a petascale combustion simulation
developed by researchers at Sandia National Laboratories. While
this simulation computes information both as a field and as tracer
particles, only the particle data tends to be saved to disk since the
field data is too large. As a result, in situ visualization tools that can
represent information from the high resolution field data would be
greatly beneficial to S3D. Furthermore, the manner through which
particles are saved and accessed during post processing limits the
amount of interactivity currently available in the scientists’ work-
flow.

The original workflow used by the scientists is shown in Fig-
ure 1a. Particles are output from the simulation by each of the
computing nodes in no particular ordering. In terms of selecting
particles, scientists filter based on the scalar values associated with
them, such as when the temperature is within a desired range. How-
ever, this filtering process must be done by iterating through all of
the simulation particles to check if a particle matches the filtering
criteria. The filtered particles are then visualized in a 3D scatter plot
based on their positions. Lastly, groups of particles are isolated into
different features based on spatial proximity to one another within
local neighborhoods throughout the domain.



(a) Original Workflow (b) Proposed Workflow

Figure 1: The scientists’ workflow to select and analyze simula-
tion outputs. In the original workflow, the entire set of particles is
filtered by iterating through each particle, which is time consum-
ing. The proposed workflow is to apply filters to in situ generated
probability distribution functions (PDFs) and only load the particles
which match the filtering criteria, thus allowing interactive particle
selections.

Figure 2: The hierarchical sub-division of domain regions as well
as the terminology we use to indicate each throughout the paper.

3 METHODOLOGY

The proposed workflow, as shown in Figure 1b, is to utilize in situ
generated probability distribution functions (PDFs) to aid post hoc
particle selection and analysis. PDFs are generated in situ during
the simulation and saved in a compressed format. In addition, parti-
cles are sorted according to the same spatial organization scheme of
the PDFs before being written to high performance storage. In post
processing, instead of filtering the particles directly (a time con-
suming operation), the scientists can interactively apply filters to
the PDFs in an exploratory fashion. Particles are then loaded from
disk according to the selected PDFs. Since both the particles and
the PDFs use the same spatial organization scheme, our post hoc
visualization tool is able to quickly pinpoint the memory locations
of the particles on disk without scanning through the entire dataset.
An important design goal is to make all interactions on PDFs to be
interactive in order to verify scientists’ ideas quickly. The particle
loading operation based on the filtered PDFs depends on the amount
of particles that need to be loaded into memory. However, since the
PDF selections already subsample the domain, the amount tends to
be small enough to achieve a usable level of interactivity.

3.1 In Situ Components
Both the PDF generation and particle sorting follow the same spa-
tial organization scheme which we insert as an additional level into
the simulation spatial hierarchy. At the highest level lies the simu-
lation’s global domain. This is then split into a number of domain
decompositions which are each handled by a distributed comput-
ing node. We further subdivide each domain decomposition into a
number of sampling regions, which each is used to generate a PDF.
These sampling regions could be used to sample either particles or
field data. Figure 2 depicts an image of these hierarchical levels.

In this study, the number of grid points per dimension per sam-
pling domain is restricted to be an evenly divisible factor of the

number of grid points in the corresponding dimension in each do-
main decomposition. For example, if a domain decomposition con-
sists of 20x20x20 grid points, a possible sampling domain can con-
sist of a 5x5x5 grid points resulting in 4x4x4 sampling regions per
domain decomposition. Such a restriction ensures that a sampling
domain will never span across the boundary of a domain decompo-
sition, thus allowing our technique to remain embarrassingly paral-
lel.

3.1.1 Probability Distribution Function Generation

PDFs can be generated from either scalar field data or particle data.
However, PDFs generated from scalar fields tend to be better suited
to the scientists’ needs. When PDFs are generated from particle
data, two sources of error can arise. One source of error comes
from the total number of available particles while the other source
of error comes from the distribution of the particle locations. If
the number of available particles is small, then the distributions in
the PDFs will not be statistically significant. On the other hand,
if there are regions in the domain which contain very few or very
many particles, the PDF data will be skewed. We conducted a study
to analyze errors when using particle data to generate PDFs which
can be found in Section 4.2.3. We therefore choose to use the scalar
field data as input into the in situ PDF generation routines since it
better represents trends in the data throughout the domain.

In order to easily incorporate this into the S3D simulation and
maximize its usability, we provide multiple subroutines for gener-
ating PDFs with different settings along with a configuration read-
ing subroutine to populate the PDF settings from file. Specifically,
three subroutines are used to handle generating 1D, 2D, and 3D
PDFs which allow users to compare the distribution of up to three
variables at once. These subroutines are designed to be run in each
domain decomposition (MPI process), and also handle dividing the
domain decomposition into sampling regions according to the de-
sired resolution. The inputs required for the PDF generation sub-
routines are: the spatial subdivision of the domain decomposition
into sampling regions, the values of each scalar field location that
need to be sampled into the PDF (note that we rely on the simula-
tion to take out any ghost cells that might disrupt statistics), as well
as other specific PDF parameters such as the number of bins and
value ranges to use in each dimension of the PDF. These parame-
ters can be determined a priori (via a configuration file) or changed
dynamically throughout the course of a simulation. In terms of in-
ter processe communication, our algorithm is embarrassingly par-
allel due to the carefully specified sampling region size. Field data
and particle data communication is better handled by the simulation
because different simulations might have different communication
patterns.

PDFs are first generated using the dense matrix representation.
More specifically, each PDF is represented as an array where each
array element represents a bin of the PDF. The subroutine loops
over each grid point in the domain decomposition. The position of
the grid point is divided by the sampling region size to get the sam-
pling region index which the grid point belongs to. Then we map
the scalar values of the grid point to the corresponding PDF bin by
discretizing the scalar values of a grid point according to the PDF
bin ranges. For example, when the grid point has the normalized
scalar values (temperature: 0.35, pressure: 0.42, density: 0.87) and
there are 10 bins per dimension of the 3D PDF with range from 0.0
to 1.0, the grid point is mapped to bin (3, 4, 8). With the corre-
sponding PDF bin calculated, we then increment its frequency by
1. Note that this procedure only requires one loop through the grid
points in a given domain decomposition. Depending on the por-
tion of empty bins in each PDF, it may be inefficient to store the
PDFs in this dense matrix representation. As a result, the algorithm
chooses whether to convert a PDF to its sparse matrix representa-
tion depending on which representation results in a smaller storage



requirement. The dense matrix representation stores the frequency
of each bin by one value, while the sparse matrix representation
stores only the frequency of each nonempty bin by two values (fre-
quency and location). Therefore, when the number of nonempty
bins is less than half of the total number of bins in a PDF, it is more
efficient to store the PDF in its sparse matrix representation. A flag
is also stored per PDF to indicate which representation it is using.

Helper arrays are necessary for indexing the PDFs when using
the sparse matrix representation. When outputting PDFs in sparse
matrix representation, the storage size of each PDF depends on the
number of nonempty bins. Since we are concatenating multiple
PDFs into a single file in order to reduce the number of files to
a manageable amount, we need a way to determine where the in-
formation corresponding to a PDF is in the concatenated file. As
a result, we also output a helper array per concatenated file to in-
dex the individual PDFs. This array requires only one number per
PDF in the concatenated file. Our scheme currently concatenates
all the PDFs in the same domain decomposition. If that still gen-
erates an unmanageable amount of small files, it is also possible
to concatenate PDFs from multiple domain decompositions. More
investigation in optimizing this process will be explored in future
work.

3.1.2 Particle Sorting/Indexing

An in situ subroutine is also provided to sort and index the particles
according to the spatial organization of the sampling regions. This
ensures more efficient selective access of the particles in post pro-
cessing. Since the PDFs and the particles both follow the same spa-
tial organization scheme, scientists are able to first perform filtering
operations on PDFs in order to reduce the amount of particles being
accessed. Otherwise, the entire particle data needs to be loaded for
filtering which can be a rather slow operation. Since scientists tend
to need to perform many filtering operations in an exploratory fash-
ion to explore new datasets, sorting and indexing particles in situ is
essential for efficient analysis of the particle data.

The common spatial organization scheme ensures the particles
within the same sampling region of a PDF are contiguous in stor-
age and easy to locate. We provide an additional subroutine to sort
and save the particle data which is designed to run independently
in each domain decomposition. The algorithm begins by looping
over each particle and mapping its spatial location to an associated
sampling region. A sampling region ID array is created indicating
which sampling region each particle belongs to with one ID per
particle. While looping through the particles, the number of par-
ticles per sampling region is also calculated into a particle count
array. Prefix sums are then calculated from the particle count array
to get an sampling region offset array, which indicating where the
particles in each sampling region should be in the sorted array. Fi-
nally, by utilizing the sampling region ID array and the sampling re-
gion offset array, each particle is copied to its unique location in the
sorted array. Note that an incrementing index per sampling region
is also used here to indicate the particle index within a sampling
region segment in the sorted array. This particle sorting algorithm
is capable to be GPU accelerated, but the current implementation is
only in CPU.

Since the particles are stored contiguous in a single file with mul-
tiple sampling regions (which vary in particle count). A helper array
is required to efficiently access the selected particles. The helper ar-
ray denotes where to access the particles within the same sampling
region within the file. Specifically, we use the sampling region off-
set array mentioned above to act as the helper array.

3.2 Post Simulation Analysis and Exploration Tool
The in situ generated PDFs as well as the sorted particle data are
used to support efficient analysis of the simulation in post process-
ing. Due to the exploratory nature of the analysis tasks required

by the scientists, a high level of interactivity is necessary. As a
result, we design and implement an intuitive visualization and anal-
ysis tool that can be used to explore the computed PDFs. PDFs,
which contain desired data trends, can be selected and used to in-
teractively query the associated particle data for further analysis.
An image showing the general interface of our visualization tool
can be seen in Figure 3.

The design of the post hoc visualization and analysis tool closely
follows the proposed workflow, which was described in Section 3.
First, the in situ generated PDFs per simulation run are loaded to
the post hoc tool. The settings of the PDFs and the simulation, such
as sampling regions and domain decompositions are automatically
populated from the in situ saved configuration files. The post hoc
tool facilitates two ways to browse the loaded PDFs: 1) The PDFs
are grouped into slices in order to better show the physical location
of a particular PDF, and 2) The timeline widget allows the scientists
to view PDFs among different time steps of the simulation. Next,
the PDFs are filtered using range-based queries (i.e., whether a de-
sired proportion of samples lie within a certain range). Finally, the
particles corresponding to the selected PDFs are loaded and visual-
ized for subsequent particle analysis. Currently the selected subset
of particles is exported to other tools in the scientists’ workflow.
However, future work will focus on integrating desired particle-
based analysis techniques directly into our visualization system.

Multiple design decisions are made while designing the user in-
terface. Users are able to choose which dimension to show for each
PDF. The PDFs generated in situ can be three dimensional which
impose certain difficulty for visualization. Visualizing a 3D PDF
directly is often confusing to the users. As a result, we provide
controls for users to select which dimensions to plot for a 3D PDF.
When only one dimension is chosen, the 3D PDF collapses into a
1D PDF which is then plot as a bar chart. When two dimensions
are chosen, the 3D PDF collapses the unchosen dimension and plots
the 2D PDF as a heatmap. This way, the users are able to analyze a
vairable closely using the 1D PDF and also they are able to explore
the correlation between two variables using the 2D PDF.

Grouping PDFs into axis aligned slices in the physical space
helps organizing the PDFs in a meaningful way and identifying pat-
terns in the data. The in situ process generates a large amount of
PDFs. If we simply show all the PDFs in a list, the users can easily
get lost in the ocean of PDFs and potentially identify misleading
patterns. For example, if a user wants to examine the spatial neigh-
bors of a specific PDF, the user will have to look through the whole
list of PDFs since the neighboring PDFs are not necessarily nearby
in the list. With the slice views, the users are able to locate the PDF
associated with a specific spatial location. Also, the patterns shown
in the slice views are now meaningful in the physical space.

The timeline view aims to help identifying interesting time steps
given a specific filtering criteria. After range filters are applied to
the current time step, the next dimension to explore is usually the
temporal dimension. It is often interesting to see which time steps
have the minimum/maximum amount of selected regions. The line
chart in the timeline view is specifically aimed for this purpose.
The line chart shows the number of selected regions for each time
step. As a result, users can directly jump to time steps that are more
interesting. Note that generating the timeline line chart is often time
consuming because it performs the filtering process to all the time
steps. As a result, the line chart is only generated on demand when
the user clicks the generate button.

Loading the particles of the selected PDFs can be done interac-
tively since the particle data and the PDFs share the same spatial
organization scheme. Given the selected PDF ID, we are able to
pinpoint the memory location of the group of particles using the in
situ generated helper arrays for the particles. Thus, we are able to
efficiently load the particles the scientists are interested in without
scanning through the entire particle data. While selecting all the



Figure 3: The interface of the post hoc visualization tool is composited of multiple linked views. The detail view shows a visualization of
a single PDF selected by hovering the mouse over the slice views. Darker colors represent higher frequency counts in the PDF. Each slice
view shows a slice of PDFs on orthogonal cutting planes in the volume. The location of each slice is shown in the axis widget. The X, Y,
and Z axes are correspondingly represented with red, green, and blue. The border color of a slice view matches with the border color of the
slice in the axis widget in order to show which axis the slice view corresponds to. There are also two colored lines in each slice view to show
their orientation. The axis widget also shows the orientation of the spatial view. The filter editor allows scientists to add, edit, and delete
range-based filtering criteria. The spatial view shows the particles after filtering. An immediate feedback is given to the scientists in this
view and it is important because the filtering process is usually done in an exploratory fashion. Also the greyed out PDFs in the slice views
represent the filtering result. Lastly, the timeline view shows the number of filtered PDFs in all time steps and helps the scientists to identify
time steps of interest.

PDFs will result in loading the full particle data, in practice, only a
small subset of PDFs and particles are of interest, allowing our tool
to remain interactive.

4 RESULTS

We implement our techniques directly into the S3D simulation and
demonstrate its usability through a combustion research case study
and extensive performance evaluations using Lawrence Berkeley
National Laboratory’s NERSC computing facility.

4.1 Case Study

We used our system on an existing simulation of a temporally
evolving mixing layer between n-dodecane and diluted air under-
going ignition. This simulation was performed using the massively
parallel DNS code S3D [5] to provide new insights on the physics
of combustion processes occurring at conditions relevant to diesel
engines. A volume visualization of the simulation is shown in Fig-
ure 4. The global domain of the simulation is 1400x1500x1000,
while each domain decomposition is responsible for 30x30x25 grid
points. 80,000 computing processors (5,000 computing nodes) in
Titan were used. Each time step of the field data occupies 564GB
of storage while each time step of the particle data is 50GB.

In this case study, a 3D probability distribution function (PDF) is
generated from the temperature, mixture fraction, and scalar dissi-
pation of each grid point per domain decomposition. This generates
40x50x40 PDFs for the entire domain. Each PDF uses 10 bins per
dimension with a value range of 800–1100 for temperature, 0.0–0.3
for mixture fraction, and 0.0–0.3 for scalar dissipation. Each time
step of the PDF data only uses 1.2GB of data storage, which is or-
ders of magnitudes smaller than the field data. Due to the much

Figure 4: Direct volume rendering of the AirDodecane simulation
showing low (green) and high (yellow) regions of the pressure field.

reduced data size, the generated PDFs can be visualized and ana-
lyzed on a local workstation. Furthermore, since the particle data is
sorted according to the spatial organization scheme, the system can
quickly locate and access particles representing specific features of
interest.

Our visualization tool is able to achieve fluid interactive slicing
and filtering on a local workstation due to the reduced data size. By
interactively inspecting each PDFs in detail by mousing over them,
we are able to quickly scan the PDFs for interesting features and



Figure 5: Temperature (horizontal axis) vs. mixture fraction (ver-
tical axis): dark blue represents high frequency while light yellow
represents zero frequency. The left PDF is found in the outer region
of the volume, which shows that most contents in the sampling re-
gion are air, hence low mixture fraction. The right PDF is found in
the inner region of the volume, which shows that most contents here
are fuel, hence high mixture fraction. These two PDFs confirms the
expectations from the scientists. The middle PDF is believed to
have some burning contents at low values of mixture fraction due
to the bins that deviate from the inverse linear correlation.

Figure 6: Particles selected by combining multiple range-based fil-
tering criteria. The color represents the temperature of the particles
from low (blue) to high (red). Based on knowledge from domain
scientists, we used the following criteria: 1) 5% of the samples are
within temperature range 920–960, 2) 6% of the samples are within
mixture fraction range 0.04–0.2, and 3) 30% of the samples are
within scalar dissipation range 0.0–0.14.

trends. Figure 5 shows how the PDFs are able to verify the expecta-
tions of the scientists. With advice from the scientists with domain
knowledge about the dataset, we are able to setup range-based fil-
tering criteria to precisely select interesting regions. Figure 6 shows
a rendering of the user selected particles. In problems where a non-
premixed flow undergoes ignition, high values of scalar dissipation
are responsible for delaying the ignition event. By selecting parti-
cles based on different scalar dissipation ranges, scientists can as-
sess how different levels of mixing rate have a different impact on
chemical reactions. Furthermore, they can also use this data as the
starting point for more sophisticated time-varying analysis of their
features of interest.

4.2 Performance Results

The benefit of our in situ analysis algorithm is that it prepares the
data for more accurate and efficient analysis in post processing.
However, by doing in situ analysis, our algorithm imposes a cer-
tain overhead in both computation and storage. In this section, we
demonstrate the usability of such in situ analysis by comparing the
in situ overhead with post processing benefit.

Figure 7: The storage sizes of in situ generated 3D PDFs with dif-
ferent number of bins per PDF and different variables. For all eight
simulation runs, the domain decomposition size is set to 20x20x20
and the global domain size is 400x400x400. The number of PDFs
per domain decomposition is 4x4x4. The horizontal axis represents
the number of bins per PDF while the vertical axis represents the
actual output file size of the PDFs. With a larger amount of bins in a
PDF, it is more likely to have more bins which contain information.
As a result, the size of the sparse matrix representation of the PDF
increases. The blue bars represent PDFs generated using the three
components of the velocity field while the red bars represent PDFs
generated using pressure, temperature, and mass as variables. Us-
ing different variables creates different data distribution affecting
the size of the generated PDFs. For reference, the storage size of
the 6,435,078 particles per output step in this S3D test run is about
2GB, which is magnitudes larger than the storage size of the PDFs.

4.2.1 Probability Distribution Function Overhead

The storage requirement of the probability distribution functions
(PDFs) depends on the number of bins per sampling region. In the
case where we store the PDFs in the dense matrix representation,
each bin of a PDF is stored as an element in the array that represents
the PDF, thus giving us a well defined storage size. The storage size
can be computed with nm, where n is the number of bins per PDF
and m is the number of PDFs that are generated. However, after
converting the PDFs to the sparse matrix representation, the storage
size is no longer constant anymore.

With sparse matrix representation, instead of only depending on
the number of bins per PDF, the storage requirement also depends
on the scalar value distribution within sampling regions. Sparse
matrix representation means only the non-zero bins are recorded.
When the scalar values are uniformly distributed within the sam-
pling regions, they are likely to land in different bins of the PDF.
As a result more bins are likely to be non-zero leading to a higher
storage size. In contrast, if the scalar values are highly skewed
within the sampling region, only a small fraction of the bins will
be non-zero leading to a lower storage size. As a result, the worst
case of the storage size is O(nm), where n is the number of bins per
PDF and m is the number of PDFs that are generated. Practically,
the worst case storage size is very unlikely to happen. Although the
correlation between storage size and number of bins per PDF is no
longer linear, the number of bins does still affect the storage size be-
cause the increased granularity of the PDF leads to more bins with
information. Figure 7 shows the storage size of the probability dis-
tribution functions in four runs of the S3D simulation with different
number of bins per PDF. We can see that different number of bins
and different data distribution affects the storage size as described
above. Even with 3D probability distribution functions, the storage
size is still minimal compared to the particle output.

Our test simulation runs also show that the computational over-



Figure 8: A strong scaling test of the compute time spent on in situ
PDF generation vs. a standard simulation time step. Four simula-
tion runs are performed with the same global domain but different
domain decomposition size and different number of bins in PDFs.
The global domain size is set to 600x600x600, and the number of
PDFs per domain decomposition is 2x2x2. In both figures, pdf
represents the number of bins per PDF, dd represents the domain
decomposition size, and np represents the number of processors.
The PDF resolution decreases accordingly with the domain decom-
position size. The compute time of generating PDFs is measured
without I/O. We can see the PDF generation time is lower than the
simulation time by orders of magnitude even for a single time step.

head imposed by in situ PDF generation is only a small fraction
of the overall simulation time. The algorithm contains two loops:
one that loops through all the grid points to generate the PDFs, and
another that loops through all the bins in all the probability distri-
bution functions to compact them into sparse matrix representation.
As a result, the time complexity is O(n+mb), where n is the num-
ber of grid points per domain decomposition, m is the number of
PDFs per domain decomposition, and b is the number of bins per
probability distribution function. In practice, n and mb tend to be
similar in magnitude. Figure 8 shows a strong scaling test on in
situ PDF generation time and simulation time. We can see the PDF
generation time only takes a small fraction of the simulation time.

4.2.2 Particle Sorting/Indexing Overhead

The storage overhead of particle processing is negligible compared
to the standard output size of the simulation. The sorted particle file
per domain decomposition is the same size as the unsorted particle
file since it contains the same information, but in a different order.
However, our algorithm outputs an additional index file per domain
decomposition for quickly locating particles in the sorted particle
file. The amount of storage required for the index file depends on
the number of PDFs in the domain decomposition. Specifically, two
integers per PDF are output to the index files. Since the number of
PDFs is orders or magnitude smaller than the number of particles
and since each particle can contain hundreds of double precision
floating point values, the storage overhead of these additional index
files is negligible in comparison.

The computational overhead of in situ particle processing arises
from the particle sorting that is done per domain decomposition.
The runtime cost for particle sorting depends on the number of par-
ticles and the number of PDFs. The time complexity is O(n+m),
where n is the number of particles and m is the number of proba-
bility distribution functions. In most cases, n is magnitudes larger
than m. Figure 9 shows that the time spent sorting the particles is
linearly related to particle density, which is defined here as the aver-

Figure 9: The time used for particle sorting with different parti-
cle densities. Particle density is defined here as the average num-
ber of particles per grid cell. The total number of grid cells is
set to 400x400x400. The domain decomposition size is fixed to
20x20x20 and the number of PDFs per domain decomposition is
fixed to 4x4x4. Even with particle density set to 1, which is 8000
particles per domain decomposition and 64 million total particles,
particle sorting only takes 0.558 milliseconds. For reference, a time
step of the simulation takes about 2 seconds. The particle sorting
uses less than 0.02% of the simulation time.

age number of particles per grid cell. When the particle density is 1,
which translates to 64 million particles given a 400x400x400 grid,
the particle sorting time is only 0.558 milliseconds. For reference,
one time step of a typical run of the S3D simulation with a grid size
of 400x400x400 takes 2 seconds. That is, the particle sorting algo-
rithm only takes an extremely small fraction of the simulation time
even if we choose to sort/output the particles for every time step.

4.2.3 In Situ vs. Post Hoc PDF Generation

In this section we justify the need to generate the probability distri-
bution functions (PDFs) in situ from the available field data. While
PDFs can be generated post hoc from the dumped particle data,
generating them in situ is more efficient and more accurate. Note
that field data is not generally produced by S3D since it is much too
large to be output at a regular temporal frequency.

Sorting particles and generating PDFs in situ primarily saves
time on I/O. The major steps to sort particles and generate PDFs
post hoc are 1) load unsorted particles from disk, 2) sort particles,
3) generate PDFs from the sorted particles, and 4) output sorted
particles and PDFs. There are two major differences from the in
situ procedure. First, the PDFs are generated from particle data in-
stead of field data. The post hoc procedure loops over each particle
instead of each grid point, thus the runtime complexity becomes
O(p+mb), where p is the number of particles, m is the number of
PDFs, and b is the number of bins per PDF. Usually, p =Cn, where
C can be considered a constant particle density value and n is the
number of grid points. As a result, the runtime complexity of the
post hoc procedure is the same as the in situ procedure. Second,
two extra I/O steps must take place to load the unsorted particles
and save the sorted particles. This becomes less feasible as billions
of particles can be output by current simulations. The time it takes
to load and output the particles can easily become a new bottleneck.
Figure 10 shows a weak scaling timing comparison between the in
situ procedure and the post hoc procedure. We can see that the post
hoc procedure is more time consuming due to the two extra I/O
steps.

In situ generated PDFs are not only more efficient but also more
accurate. The difference between the in situ and post hoc gener-
ated probability distribution functions is the data source: the in situ



Figure 10: Weak scaling timing comparison between the in situ pro-
cedure and the post hoc procedure. The number of grid points per
domain decomposition is set to 8000 (20x20x20) and the particle
density per grid point is roughly 1.0. The times for sorting particles
and generating PDFs (b, c, h, j) are small compared to the I/O times
and are barely visible in the graph. We can see the time to output
PDFs and sorted particles (a, c, g, i) are similar in both in situ and
post processing. However, the post processing version requires two
more I/O steps, outputting and loading unsorted particles (e, f).

procedure uses the field data while the post hoc procedure uses the
particle data. Generating from field data is more accurate because
we can then select particles based on the high resolution field infor-
mation. This accuracy difference depends on the purpose of the post
hoc analyses. In our case, the scientists want to identify interesting
regions in the field that matches certain criteria and then analyze
the particles within these regions. As a result, the in situ generated
PDFs are more accurate. Using the the field data allows one to take
uniformly distributed samples. If the particles are uniformly dis-
tributed in the volume, the generated PDFs should be very similar.
However, since the particles are rarely uniformly distributed, errors
in PDFs generated post hoc can arise. Figure 11 shows the differ-
ence between a probability distribution function generated from the
field data (which can only be done in situ) and those generated from
particle data (which can be done post hoc) over the whole domain.
We can see that using simulation particles results in a PDF that is
very different and therefore noticeably less accurate from one that
is generated directly from the field data.

4.2.4 Post Processing Timing

Lastly, we compare the overall time to extract a desired subset of
particles using the PDFs against the original method of filtering
from the particle data directly. The process consists with the fil-
tering step and the particle extraction step. Filtering checks if a
particle matches the specified criteria and then the particle is ex-
tracted/copied to the output array. In the original scheme, both steps
are performed in a single for loop which iterates over the full par-
ticle data. As a result, the time to load and extract a particle subset
remains constant. In our method, the filtering is no longer done per
particle, instead it is performed using the in situ generated PDFs.
Because all the PDFs have to be visited, the filtering process takes
a constant time. After the PDFs are filtered, we have already iden-
tified the subset of particles that we want to extract. As a result, the
time it takes to extract the particles reduces depending on how large
the subset is. The timing results comparing the original scheme and
our method can be seen in Figure 12. As long as the number of
particles that needs to be extracted is smaller than (nearly) the full
dataset, our scheme performs much faster than the original one, al-
lowing scientists to interactively extract various particle subsets.

5 DISCUSSION

The scientists we work with confirm that our approach provides a
very quick and convenient way of exploring correlations in the sim-

Figure 11: Top) Graphs showing the chi-squared difference be-
tween a 1D histogram (PDF) generated from the full resolution
simulation grid (ground truth) to one generated by a particle sub-
set. Three particle distributions were used: particles seeded using
a uniform random distribution (blue), particles seeded using a true
random distribution (red), and the real simulation particles (green).
The plot on the left represents a 10 bin histogram while the plot on
the right represents a 100 bin histogram. The uniform random seed-
ing results in the smallest difference, whereas the real simulation
particles results in the largest difference. Furthermore, reducing the
number of available particles or increasing the number of bins also
increases the difference. Bottom) A representation of the resulting
histograms for the data point indicated by a black arrow. Note that
all histograms we normalized to account for total frequency dif-
ferences that arise from reducing the number of particles. These
results demonstrate the need to generate histograms in situ using
the simulation grid rather than post hoc using the particle data.

ulation data. Our visualization tool really thrives at enabling them
to quickly test their ideas, such as determining the dependencies
among variables. When the result from our visualization looks en-
couraging, more complicated and time consuming analysis can then
be carried out with higher confidence.

5.1 In Situ vs. Post Processing

One of the major driving motivations behind the development of
this work was the inability of scientists to predict all the types of
trends that interest them. As a result, a large majority of their ex-
ploratory investigation involves a trial and error approach which
cannot be moved entirely into an in situ analysis. By incorporating
a hybrid of in situ and post processing, we can accelerate the rate at
which scientists perform their exploration of the data.

In our approach, the in situ processing (PDF generation and par-
ticle sorting) acts as both a data reduction technique and a means of
significantly accelerating the post processing analysis (which must
be done in a trial and error fashion). Furthermore, the full particle
data must be saved to disk because the scientists do not have a pri-
ori knowledge of which particle subsets may be of interest to them.
The in situ processing we perform allows the scientists to quickly
work with the large particle data in an efficient manner.

Note our implementation also has the ability to generate in situ
particle-based PDFs, however we focus primarily on examples us-
ing in situ generated PDFs from the field data because 1) it is simply
not feasible to save the field data from the simulation at regular time
intervals and 2) the larger number of equally spaced samples in the
field data results in a more accurate representation of data trends.



Figure 12: Filtering particles by iterating through each particle vs.
iterating through each PDF. The dataset consists of 6.4 million par-
ticles before filtering, while there are only 0.5 million PDFs. The
filtered by particles line includes the time to load the particles and
to apply the filtering criteria to each particle. The time required to
filter by particles remains constant because all the particles have to
be visited exactly once. On the other hand, the filtered by PDFs
line includes the time to load the PDFs, to filter by PDFs, and to
load the filtered particles. Filtering by PDFs only requires visiting
and loading the filtered particles, thus forming a linearly increasing
line.

5.2 Temporal Analysis of Particle Subsets
The end result of this workflow is a subset of particles that match
a specific set of potentially interesting simulation data trends. The
next step involves a detailed analysis of the temporal properties of
the subset. Currently the scientists have an alternate set of tools that
they use to conduct this time varying analysis. Our system currently
acts as a mediatory tool to accelerate the rate at which these subsets
can be extracted from the full data.

In the future, we plan to incorporate these additional temporal
analysis tasks directly into our visualization software. Currently,
scientists are limited to exporting the particle selections to the other
tools in their workflow and eliminating this step will streamline
the scientific process. These additional tasks will include tempo-
ral analyses of particle trajectories in both physical and phase space
and will allow scientists to gain a better insight into the evolution
of extracted features of interest.

5.3 Usability
There are two major aspects which characterize usability of our
approach. Firstly, interactivity is essential for post hoc visualiza-
tion and analysis because the particle selection task requires an
exploratory process. Since the probability distribution functions
(PDFs) are generated in situ, we effectively prepare the massive
simulation data for interactive post hoc exploration, as discussed in
Section 4.2.4. Secondly, accuracy of the features represented by
the selected PDFs and particles is much higher since the PDFs are
generated using the full resolution field data, as demonstrated in
Section 4.2.3.

Furthermore, since our in situ technique is embarrassingly par-
allel, the PDF generation procedures are local to a domain decom-
position, which makes it really easy to adapt to any simulation. We
also provide our routines in such a way that can process both field
data and particle data, making our tools applicable to a wide vari-
ety of simulation types. The examples in this paper focus on the
combustion simulation results of S3D as it was the motivation for
developing this work. In the future, we plan to test how easily our
system can be adapted to other case studies with little to no modifi-
cation to the techniques themselves.

5.4 Limitations and Other Future Work

There are some limitations to our technique. First, it is possi-
ble that particles may not be uniformly distributed among the do-
main decompositions resulting in performance bottlenecks in sort-
ing. However, such a case has not occurred in the simulation runs
we performed with the S3D simulation. Secondly, there is a limit in
the available resolution of the PDFs, both in physical and variable
space. There will always be a point where the number of PDFs and
bins becomes so large that it is more advantageous to simply dump
the full resolution field data. Users will have to choose a balance
between the spatial resolution of the PDF decomposition and the
number of bins in each PDF.

Next, limits in the spatial resolution of the PDFs will limit the
spatial detail through which particles can be selected. Future work
will focus on using additional passes over the selected particle sub-
sets to further refine the features of interest. For example, we can
use the variables found in the particle data itself to filter out any
unwanted particles bypassing the spatial resolution limits of each
PDF. Such a procedure can still be interactive since we have al-
ready reduced the particle data in the initial filtering step and can
exploit the embarrassingly parallel nature of such a task.

As for other future work, we also plan to reduce the number
of files necessary to represent the PDFs and particle data, which
are saved separately per domain decomposition. This will be done
by concatenating information from neighboring domain decompo-
sitions when the number of files becomes unmanageable. We also
plan on using the in situ generated PDFs to perform additional
tasks, such as entropy estimation, and more advanced analysis, such
as importance driven time step selection. This can allow the sim-
ulation to intelligently choose certain temporal ranges at which to
save information more frequently.

6 CONCLUSION

Overall, we present a hybrid in situ and post processing method
which uses probability distribution functions (PDFs) and a reorga-
nization of particle data to aid in simulation analysis. This coupling
between PDFs and particles enables scientists to explore their sim-
ulation and accurately select the desired particle-based features in
an interactive exploratory fashion. We also develop a visualization
tool which can be used to perform each of these features in an intu-
itive manner. We evaluate the usability of our method using a real
combustion simulation and demonstrate the increases in task effi-
ciency and accuracy that the new workflow provides to scientists.
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