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ABSTRACT 
This paper presents a framework to enable parallel data analyses 
and visualizations that combine both Lagrangian particle data 
and Eulerian field data of large-scale combustion simulations. 
Our framework is characterized by a new range query based 
design that facilitates mutual queries between particles and 
volumetric segments. Scientists can extract complex features, 
such as vortical structures based on vector field classifications, 
and obtain detailed statistical information from the corresponding 
particle data. This framework also works in reverse as it can 
extract vector field information based on particle range queries. 
The effectiveness of our approach has been demonstrated by an 
experimental study on vector field data and particle data from a 
large-scale direct numerical simulation of a turbulent lifted 
ethylene jet flame. Our approach provides a foundation for 
scalable heterogeneous data analytics of large scientific 
applications. 

Categories and Subject Descriptors 
E.m [Data]: Miscellaneous – Particle Data, Volume Data; J.2 
[Computer Applications]: Physical Sciences and Engineering – 
Chemistry, Physics. 

General Terms 
Management, Performance. 

Keywords 
Feature extraction and tracking, data transformation and 
representation, scalability issues. 

1. INTRODUCTION 
Detailed combustion simulations are essential in developing 

next generation engines of high efficiency. Direct numerical 

simulations (DNS) can capture and describe the key turbulent 

combustion chemistry interactions. Sandia National Laboratories 

scientists developed S3D, a massively parallel solver, to solve 

the DNS governing equations [1]. The DNS solution from S3D is 

obtained for field data on a fixed spatial grid, and is also 

recorded in terms of particle data. The field data, corresponding 

to the Eulerian specification of the flow, focuses on the spatial 

locations through which the fluid flows over time [2, 3]. The 

particle data, corresponding to the Lagrangian specification of 

the flow, records the trajectory of massless tracer particles 

through space due to advection only [4]. Studying turbulent 

combustion from both the Eulerian and Lagrangian viewpoints 

can lead to new understandings of important processes, such as 

autoignition, for improving efficiency in energy conversion. 

Researchers have developed several algorithms and systems to 

facilitate combustion scientists in exploring and analyzing the 

field and particle data from the turbulent combustion 

simulations. Examples include volume visualization [5], 

topological analysis [6], statistical analysis [7], and trajectory 

visual analytics [8]. These techniques have successfully helped 

scientists extract important statistical and structural information 

from large combustion data, and gain new insights into complex 

physical and chemical processes. 

Given these sophisticated analytic tools, scientists also desire 

to further collate the studies from both the Eulerian and 

Lagrangian viewpoints to possibly obtain a deeper understanding 

of fundamental combustion processes. In a typical scenario, 

scientists can first identify volumetric features using 

segmentation and/or classification methods. Feature selection 

usually implies certain statistical or topological characterization 

of the field data. Based on spatial identified features, scientists 

may also want to examine particles within the volumetric regions 

of the features. The statistical information, such as the 

conditional average, can be collected for the selected particles to 

describe the relationship between variables. In addition, the 

selected particles can be assembled into a meaningful time series 

for possibly connecting volumetric features over time, given that 

feature tracking is conventionally difficult to achieve without 

high temporal sampling rate of field data. Hence, this combined 

capability can potentially become a powerful tool that enables 

scientists to investigate the interplay between knowledge and 

hypotheses developed from field data and particle data. 

A scalable realization of analysis tasks involving both data 

types is very challenging. First, the field data and the particle 

data have completely different data representations deployed by 

simulations. The Eulerian field data records the values at the 

fixed spatial locations, while the Lagrangian particles are 

advected spatially with the flow velocities. Second, given a 

distributed environment, it is non-trivial to select particles within 

volumetric regions, and vice versa. It is difficult to design a 

uniform data partitioning and distribution scheme to favor the 
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operations for both particle and field data. Third, the analysis 

tasks on both data are typically based on functions of primary 

variables, and we need to evaluate these functions at runtime. 

However, the output of these functions is not known a priori, 

which makes it hard to apply indexing techniques [9, 10] to 

preprocess the data and determine access patterns. Thus, due to 

the heterogeneous nature of the data and a priori unknown 

functions, it is fundamentally difficult to design a unified and 

scalable scheme favorable to both Eulerian and Lagrangian data.  

In this work, we study the issue of analyzing heterogeneous 

combustion data and make the following contributions: 

 We introduce a parallel framework to support analytics 

for both field data and particle data while minimizing 

computation overhead. 

 We enhance particle queries and make it possible to 

select particles within irregular spatial regions in an 

efficient way. 

 We develop a new parallel segmentation method that can 

efficiently extract sub-features from highly 

interconnected topological classifications. 

We demonstrate our framework with real-world combustion 

data and show that the resulting analyses and visualizations can 

provide scientists with new insights into their large data in an 

efficient manner. 

2. RELATED WORK 
A set of techniques have been developed to enable analysis 

and visualization of large particle data. Ma et al. [11] presented 

hardware-assisted rendering techniques for interactive 

visualization of the data generated from particle accelerators. 

They generated compact volume representations for the large 

scale particles with high density, and used fast volume rendering 

to depict different regions of the particle data by adjusting the 

transfer functions. Jones et al. [12] presented a data exploration 

system that supports visual exploration of particle data from 

gyrokinetic simulations. They developed a user interface that 

enables interactive selection of particles with multiple ranges 

through parallel coordinates. A similar system has also been 

developed by Rübel et al. [13] for studying particle data from a 

laser wakefield accelerator simulation. Woodring et al. [14] 

proposed a simulation-time random sampling of a large-scale 

particle cosmological simulation, which can amortize the cost of 

post-processing analysis and visualization. Wei et al. [8] 

developed a visual analysis method based on time-series curve 

clustering to understand particle behaviors in both the phase and 

physical spaces for combustion simulations. They also developed 

a parallel line clustering method to process large particle 

trajectory data using multiple GPUs and CPUs [15]. 

Researchers have also developed feature-based analytics 

frameworks to study field data of large scientific simulations. 

Bennett et al. [7] presented a framework for feature-based 

statistical analysis of large-scale combustion simulations. The 

framework first extracts volumetric features using the topological 

analysis method and then computes conditional statistics per 

feature to study correlations with scalar quantities. Glatter et al. 

[16] developed a textual pattern matching approach for 

specifying and identifying general temporal patterns. They 

provided a high-level language for querying multivariate patterns 

from large-scale data. Kendall et al. [17] created a framework for 

quantitative analysis of flow features using geometric and other 

derived attributes for interactively exploring large-scale flow 

data sets. Gaither et al. [18] developed a system for automatic 

feature detection, extraction, and classification, which facilities 

the characterization of coherent structures over time for large 

simulations. 

Both particle and feature-based methods are critical to 
describing and understanding large scientific data. However, 
little effort has been put into the enhancement of analysis and 
visualization using both data types. This requires us to re-
examine the characteristics of particle and feature-based 
algorithms and develop scalable methods to support both particle 
and field data. 

3. OUR APPROACH 
In this section we describe our framework and its various 

components. We start by discussing an overview of the 

framework followed by the classification and segmentation of 

topological features from the vector field data. Next, we discuss 

the extraction and analysis of particles from the Lagrangian data. 

Lastly, we discuss how the framework can be utilized both for 

particle extraction based on segmented features and for feature 

segmentation based on queried particles. 

3.1 Overview 
Our framework focuses on combining information from both 

the vector field data and particle data into useful analytical 

results. Processing the vector field data consists of two steps in 

our combustion application. First we classify the vector field data 

into various topological types. The field data is now represented 

as a set of voxels, where each voxel has a topological type 

associated with it. Next, we use the classified voxel data and 

perform a region growing step to segment features from the voxel 

data. On the other hand, like in most existing work, the particle 

data only goes through one processing phase, which extracts a 

subset of particles according to some criteria.  

 

 

 
 

Figure 1. Workflow of our framework; the black arrows 

represent processing done only using one type of data, the 

red arrows represent feature-based particle query, and the 

blue arrows represent particle-based volume feature query. 

Classified Voxel 

Data 

Vector Field 

Data 
Particle Data 

Segmented 

Feature 
Extracted 

Particles 

Analysis 

Topological Flow 
Classification 

Feature Extraction 

Particle Extraction 



Our framework combines the processing steps of these two 

data formats using two possible variations. The first is feature-

based particle query, in which we use a segmented feature from 

volume data as an input to the particle extraction step and only 

extract particles found within the feature. Analysis can then be 

done on the extracted set of particles to gain a better 

understanding of the properties of the segmented feature. 

The second variation is particle-based volume feature query. In 

this method a set of particles are extracted using a range query 

on one or more of its primary variables (or functions computed at 

runtime). These particles are then used as an input to extract 

features that correspond to a particular range query and 

encompass the particles.  

Figure 1 shows the workflow for each variation, where the 

conventional operations are shown in black and new operations 

enabled by our framework are shown in red and blue. We 

elaborate on each portion in the sections that follow. 

3.2 Topological Feature Extraction 
Turbulent flow plays an essential role in modulating 

combustion processes. Topological feature extraction can 

facilitate scientists studying the interaction between the flow 

structures and the flame, and test hypotheses of important 

combustion processes, such as flame stabilization. 

3.2.1 Topological Flow Classification 
We use the classic method proposed by Chong et al. [19] to 

classify 3D flow fields. Given a 3D flow from a DNS, we 

compute the rate-of-deformation tensor in a local reference frame 

at each Cartesian grid point. By analyzing the invariants of the 

tensor, we can categorize the local flow structure into one of 27 

fundamental types. With the classification of each grid point with 

respect to its topological type, a 3D flow field can be segmented 

into the regions of different flow patterns. Scientists find that 

only a few dominated flow patterns are presented in the flow 

fields of DNS [20]. These are shown in Table 1 with their 

description by Chong et al. [19]. 

 

Table 1. Dominated Flow Topological Classifications 

Classification Topological Description 

2 Node / node / node, unstable (NNN/U) 

11 Node / saddle / saddle, stable (NSS/S) 

  12 Node / saddle / saddle, unstable (NSS/U) 

18 Focus / stretching, stable (FS/S) 

19 Focus / stretching, unstable (FS/U) 

20 Focusing / compressing, stable (FC/S) 

21 Focusing / compressing, unstable (FC/U) 

 

Among these flow classifications, scientists are particularly 

interested in vortical structures that have a coherent FC/U region 

at its core and are surrounded by an arm shaped FS/S region. 

This structure is presumed to have a strong influence on the 

deformation of local flamelets, and is critical for developing 

phenomenological models. Figure 2 shows an overview of such 

vortical structures in a combustion flow field. It is desirable to 

select and extract individual vortices at different locations and 

study the corresponding local properties. 

Although the topological classification is well defined at each 

grid point of field data, selecting and extracting 3D vortical 

structures from a combustion data presents unique challenges. 

Unlike a laminar flow field, a combustion flow field is typically  

 
Figure 2. An overview of the classification of FC/U regions 

(green) and FS/S regions (yellow) from a slice of a 3D 

combustion flow field. 

characterized by high turbulence and heavily interwoven vortical 

structures. Substantial clutter present in the combustion flow 

prevents scientists from effectively perceiving detailed patterns 

and makes isolating individual structures very difficult. These 

issues are addressed in the region growing portion of our 

framework. 

3.2.2 Feature Selection and Extraction 
In our design, we use a simple interface to assist users to 

explore complex vortical structures and extract features of 

interest. Users are presented with a 2D slice of the jet showing 

the topological classification of each point. Each classification is 

colored differently to let users distinguish features in the jet. 

Users are allowed to change the depth of the slice in order to 

view all portions of the jet. These means can significantly lower 

the visual complexity of showing turbulent vortical structures. 

Users can click on the 2D slice to select a region with a certain 

topological flow type. The point clicked is chosen as a seed point 

to generate the corresponding full 3D structure using a 

modification of a region growing algorithm [21]. The region 

growing process is performed in a breadth-first manner, in that a 

queue is maintained for searching and classifying the voxels. The 

queue is initialized using the seed point. For each voxel in the 

queue, we check topological flow type of its neighbors. If its type 

matches the selected topological type, the voxel is marked as 

being part of the region, and its neighbors that have not been 

visited are entered into the queue. We iterate this process until 

the queue is empty. 

Due to the turbulent nature of the combustion flow field we 

study, vortices can be interwoven in a vicinity area. The standard 

region growing algorithm does not sufficiently isolate structures 

which are weakly connected by only a few voxels. To address 

this issue, we add a threshold value to detect and remove the 

weak connections. Before adding a voxel to the region, we count 

the number of similar neighbors in 3D space to determine how 

strongly the voxel connects to the rest of the region. A voxel is 

then only added if its connectivity strength is above a user 

defined threshold. In this way, users are able to easily explore 

and extract the desired features from a turbulent flow. Figure 3 

shows how different shapes can be extracted from the same seed 

point by simply adjusting the threshold value. Figure 4 shows a 

3D representation of such an extracted feature.  

To account for the large data set sizes that are produced from 

DNS combustion simulations, we parallelize this process using a 

master-slave paradigm. The user views a slice of the data on the 

master processor. When a user selects a seed point, the master 

processor serially grows the region on the 2D slice. All of the 

voxels in this 2D grown region are treated as seed points to be 

used in 3D growing, and distributed to worker processors, which 



     
Figure 3. 2D slice of different shapes extracted from a 

constant seed point (red) by adjusting the threshold value; 

the images from left to right represent an increasing 

threshold. 

 
Figure 4. A 3D representation of an extracted FS/S feature. 

each see a portion of the entire 3D domain (split evenly among 

workers). Any worker that receives one or more seed points from 

the master processer starts growing in its local 3D domain. If a 

voxel that lies on the boundary between two processors is added 

to the region, the processor sends a message to its neighbor along 

that boundary so that region growing can potentially continue 

across boundaries. This continues until all workers have finished 

growing such that their respective queues are empty.  

3.2.3 Feature Sub-classification and Extraction 
While the region growing algorithm with the user defined 

threshold is an effective way to isolate weakly connected 

features, it is still limited in the types of shapes that can be 

extracted. Furthermore, using high thresholds can result in region 

shrinkage as exterior voxels may not be considered strongly 

connected enough to be added to the region. To give the user 

another level of control, we modify the region growing algorithm. 

Instead of using only 27 fundamental topological types, we 

classify each type further into 4 sub-topological types (e.g. 18-1, 

18-2, 18-3, and 18-4) according to 4 levels of the same 

topological description [19]. Having more classifications can 

facilitate the reduction of the interconnectivity of like topological 

types in the data set and produce better results when the original 

region growing algorithm is used. Figure 5 shows the difference 

between the original topological classification and the sub-

topological classification in a zoomed-in portion of the jet. 

Furthermore, we modify the region growing algorithm to be 

able to merge together strongly connected regions of different 

sub-topological type but same topological type. For example, 18-

1 can be merged with 18-3, but not with 21-3. When the region 

growing algorithm encounters a voxel with a topological type that 

could be merged, it places it in a separate queue. This separate 

region is grown and can be potentially merged if it exceeds a 

certain  connectivity  strength  that  is  determined by  counting 

voxels along the boundary of the two regions. This strength must 

exceed a user defined threshold in order to constitute a merge.  

     
Figure 5. The left image shows a zoomed-in portion of the jet 

showing the standard topological classification. The right 

image shows the sub-topological classifications using 

different shades of the same color. 

       
Figure 6. Extracting and merging different sub-structures 

from a constant seed point (red) by adjusting the threshold 

value; the images from left to right represent an increasing 

threshold. 

Figure 6 shows how different sub-topological types can be 

merged together from the same seed point by simply adjusting 

the threshold value. This can be parallelized in a manner similar 

to the normal topological region growing as described in Section 

3.2.2. Users can choose to extract features using either of the two 

methods to suit their needs. 

3.3 Lagrangian Particle Query and Analysis 
The particle query portion of our framework utilizes 

components from our previous work, specifically the parts of the 

COMPARED (Combined Particle Analysis, Reduction, 

Exploration, and Display) system which manages the large scale 

Lagrangian particle data [22]. This system is able to utilize 

multi-core parallelism to efficiently extract subsets of particles 

based on a range query of their inherent properties. 

Our framework first supports conventional query-based 

particle analytics that are commonly used in various domains and 

applications. The framework can select particles using explicit 

range query of particles' inherent properties, such as position or 

temperature, or a set of derived variables that are computed at 

runtime, such as mixture fraction. Because of its embarrassingly 

parallel nature, the particle range query can be easily parallelized 

by partitioning the data among worker processors; the range 

query of each particle can be evaluated independently on a single 

processor. 

This framework can then compute statistical information 

according to specific analysis requirements. Besides simple 

information, such as minimal/maximal/average values, scientists 

are also interested in computing more advanced statistics, such 

as the conditional average of one variable subject to another 

variable. This information is useful for exploring the relationship 

between primary variables within the selected subset of particles. 

We can also visualize the selected particles using their spatial 

information, providing immediate feedback for exploring the 

particle data. Particles are rendered as Point Sprites and colored 

according to their primary variables. From visualization results, 

we can qualitatively assess the spatial interaction between 

variables. 

 



  
Figure 7. The left image shows particles in a raw fuel stream 

and a region where the flame reaction zone is located. It is 

colored by temperature showing a cold (green) fuel stream 

and hot (red) products of combustion. The jet originates from 

the bottom left corner and flows towards the top of the 

figure. The right image shows the conditional mean of 

temperature on mixture fraction for the queried particles. 

 

   
Figure 8. The left image shows an extracted set of particles 

representing an FC/U feature. The right image shows 

particles representing an FS/S feature. 

Figure 7 shows the visualization and statistics of a subset of 

particles through certain range query. The ability of query, 

analysis, and visualization enables scientists to interactively sort 

through and conduct analysis on particle subsets of interest from 

the entire large particle data set. 

3.4 Parallel Feature-based Particle Query 
With the extracted topological features, scientists also desire 

to study their properties using the Lagrangian description. The 

key operation to enable this analysis is to identify the particles 

encapsulated in the spatial region of the features. The statistical 

information of the particles can then be computed to further 

identify flame behaviors and convey their correlation in 

multivariate space. 

We extend the particle extraction phase to accept voxel data in 

the form of a 3D bitmask from the region growing algorithm and 

extract corresponding particles from the Lagrangian data set. A 

value of 1 in the 3D bitmask represents a voxel that is part of a 

grown region. By only using a 3D bitmask to represent the field 

data, we can minimize the amount of information that must be 

transferred to the particle extraction phase. The spatial 

coordinates of each particle are used to map each particle to the 

voxel coordinate space. If the particle corresponds to 1 in the 

region bitmask, it is extracted for later analysis. Each feature, as 

generated by the region growing algorithm, can contain several 

thousands of voxels allowing scientists to extract and analyze 

particles within very complex shapes.  Figure 8 shows an 

extracted set of particles representing an FC/U feature and an 

FS/S feature. In this way, we can incorporate volumetric features 

into the query portion of our framework. 

3.5 Parallel Particle-based Volume Feature 

Query 
Query-based volume analysis is also supported by our 

framework. Since we can easily map particles to the voxel 

coordinate space, we generate a list of voxels in the form of a 3D 

bitmask that contain one or more queried particles. A value of 1 

in this 3D bitmask represents a voxel that contains particles.  

This allows us to generate features that correspond to particle 

range queries by using these voxels as input into our region 

growing phase. If the voxel corresponds to 0 in the bitmask, it is 

ignored during the region growing process. We can then compare 

this region to the volume data to see which topological 

classifications dominate our feature. In this way, we can also 

incorporate particle queries into the feature extraction portion of 

our framework. 

Another very useful application is trajectory-assisted feature 

tracking. Queried particles can be assembled into meaningful 

time-series curves as particle trajectories. These trajectories 

provide a possible way to identify a correspondence between 

features at different time steps. The information of these 

correspondences is essential to tracking features over time, which 

is traditionally difficult without sufficient temporal samples. 

With our framework, we can identify the features along one 

particular set of trajectories by performing particle-based volume 

feature query at each time step. 

4. RESULTS 
In this section we describe the results of performance testing 

and demonstrate a few examples of how both feature-based 

particle query and particle-based volume feature query can be 

used for analysis. Tests were performed on vector field data and 

particle data from a large-scale direct numerical simulation of a 

turbulent lifted ethylene jet flame. The data set, provided by 

scientists at Sandia National Laboratories, consists of vector field 

data on a 2025 by 1600 by 400 domain and particle data 

consisting of over 40 million particles.  

4.1 Performance Results 
Performance tests were done on Hopper, a 6,384 node Cray 

XE6 system, at the National Energy Research Scientific 

Computing Center (NERSC). Each node consists of two AMD 

‘MagnyCours’ 2.1-GHz processors. We test the performance of 

the region growing and particle extraction phases separately as 

they each scale differently. Furthermore, these tests do not reflect 

any I/O times and assume that data has already been distributed 

to all compute nodes. 

Since the region growing time depends on the size of the 

region, we run performance testing on a feature that is typically 

the size that scientists are interested in extracting. For this 

particular data set, this corresponds to a feature whose 

volumetric size is on the order of 10,000 voxels. This size was 

determined by consulting combustion scientists at Sandia 

National Laboratories.  

The performance results of growing such a feature can be seen 

as blue curves in Figure 9. When dividing the total domain 

among 16 processors or less, this particular region still only 



resides on one processor and gets grown completely in 

serial. Between 32 and 128 processors, the region is partitioned 

among an increasing number of processors resulting in jumps in 

speedup. As region gets subdivided further, the communication 

cost increases since the number of voxels on a boundary between 

processors also increases. We see that when using more than 128 

processors, the communication cost slowly becomes a dominant 

part of the growing process. This shows that there is an optimal 

number of processors that results in the most speedup. This can 

vary as the size and shape of the feature changes. 

We also run performance tests on the particle extraction phase. 

Unlike the region growing phase, the time required to extract a 

subset of particles is independent of the feature size. This is 

because we must map all the particles in the data set to a voxel 

location before checking if that particular voxel is part of a 

segmented feature. However, this step is embarrassingly parallel 

as no communication is required between processes to do the 

mapping and bitmask comparison. As seen as red curves in 

Figure 9, the particle extraction stage of the framework displays 

a linear speedup with the number of processes used. We achieve 

100% parallel efficiency from 8 to 512 processors.  

We also compare each portion of our framework relative to one 
another. Using the number of optimal processors (approximately 
128 in this test) based on the region growing performance data, 
we find that neither the region growing phase nor the particle 
extraction phase dominates the overall cost. Furthermore, the 
time of each phase is on the order of 10-2 seconds allowing 
scientists to explore the data at an interactive speed. With this 
nearly optimal processor number, we can achieve 74% parallel 
efficiency from 8 to 128 processors from both phases combined. 

 

 
Figure 9. Performance results for both the region growing 

step and the particle extraction step on a linear plot (top) 

and a log-log plot (bottom) 

4.2 Particle Analysis of Extracted Volume 

Features 
This section describes a few feature-based particle analysis 

results, where we first extract particles within a segmented 

feature, and then look at the parameters of these particles to 

better understand our feature. The dataset features a non-

premixed combustion jet, that is, the fuel and oxidizer are 

inserted into the jet separately before combustion occurs. The 

components of the jet correspond very closely to the mixture 

fraction between these two materials. We therefore base our 

example analysis largely around the mixture fraction variable. 

We can differentiate between mixing and burning solutions by 

looking at a plot of temperature versus mixture fraction for a 

representation of the full particle data set, as shown in Figure 10. 

The mixing solution is represented by the linear correlation 

between temperature and mixture fraction, whereas the burning 

solution is represented by the non-linear correlation. In the 

burning solution, the temperature correlates positively with a low 

mixture fraction (too much air and not enough fuel). In the other 

extreme case (not enough air and too much fuel), the temperature 

correlates negatively with mixture fraction. The peak 

temperature on the curve represents the point where fuel and air 

are mixed in just the right proportions (the stoichiometric 

mixture fraction). 

Figure 11 shows the data from the extracted sets of particles 

representing the two different topological features and Figure 12 

shows their location in the jet. It is evident that feature A (shown 

in red) represents a part of the jet that is burning. On the other 

hand, feature B (shown in green) represents a part of the jet that 

is mixing. The shapes of the extracted particles are located in 

Figure 8 with feature A on the left and feature B on the right.  

The mixing and burning branches are also evident in a plot of 
hydroxide (OH) mass fraction versus mixture fraction. When the 
mass fraction of hydroxide (a result of the burning) is zero, we 
can see a mixing between the fuel and the oxidizer because no 
chemical reactions are taking place. The burning solution in this 
case is described by the curve where the hydroxide mass fraction 
is non-zero. Figure 13 shows the hydroxide mass fraction of the 
extracted particles from the same two topological features. Once 
again, it is evident that feature A (shown in red) represents a part 
of the jet that is burning while feature B (shown in green) 
represents a part of the jet that is mixing. 

 
Figure 10. A scatter plot representative of the full particle 

data set highlighting the mixing solution (dashed line) and 

the burning solution (solid curve). 



 
Figure 11. The extracted particle data for feature A (red) 

and feature B (green) overlaid on the particle data 

representing the full jet. 

 

 
Figure 12. Two volumetric features from different parts of 

the jet; feature A (red arrow) and feature B (green arrow). 

 

 
Figure 13. The extracted particle data for feature A (red) 

and feature B (green) overlaid on the particle data 

representing the full jet. 

4.3 Volume Analysis of Extracted Particles 
This section describes a particle-based volume feature query 

analysis result, in which we look at the flow classifications that 

correspond to particle range queries. In this example, we extract 

a set of particles according to one of their fundamental 

parameters, temperature. We use the range query, Temperature > 

15 to extract only high temperature particles (that we know are 

in a burning portion of the jet). 

The spatial locations of these particles are mapped to the voxel 

coordinate space and used to generate a feature representing the 

hottest parts of the jet. Looking at the flow classifications within 

this feature shows that 35.9% consists of FS/S regions and 

23.2% consist of FC/U regions. The remaining portion consists 

of unclassified areas and a combination of other much less 

dominant flow classifications. We can repeat this procedure 

using a different range query to extract the coldest portions of the 

jet. Looking at the flow classifications shows similar results: 

32.6% consists of FS/S regions and 21.6% consists of FC/U 

regions. A similar breakdown occurs for the “warm” portions of 

the jet as well.  

For our particular example we see that the FS/S regions 
dominate both the hottest and coldest portions of the jet. This 
indicates that it is unlikely that there is a correlation between 
dominant flow classification and temperature, although a more 
careful analysis may be necessary. Correlating the various flow 
patterns to the portions of the jet described by other primary 
variables or derived variables, such as mixture fraction, can be 
very useful to combustion scientists. Such an analysis is easily 
achieved through our framework. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we present a framework that can conduct parallel 

data analysis on a combination of Lagrangian particle data and 

Eulerian field data from large-scale combustion simulations. Our 

framework combines these dataset types through two variations: 

feature-based particle query, in which we extract particles within 

a segmented feature, and particle-based volume feature query, in 

which we look at the flow classifications that correspond to 

particle range queries. These methods can allow scientists to 

combine the information from the Eulerian and Lagrangian 

viewpoints and obtain a deeper understanding of fundamental 

combustion processes. 

In addition, we provide scientists with two methods to extract 

features from a heavily interwoven turbulent flow field. The first 

is a modification of a standard region growing algorithm to 

include a user defined threshold value that can be used to 

separate weakly connected regions from the rest of the jet. The 

second uses a sub-classification technique to grow sub-regions 

which can be connected using a separate user defined threshold. 

We allow scientists to use either method in our framework.  

Performance results on a large-scale direct numerical 

simulation of a turbulent lifted ethylene jet flame show that 

parallelizing the region growing and particle portions of our 

framework can lead to large speedups. While particle extraction 

portion is extremely scalable, the region growing is limited by 

communication overheads. 

Future work will involve first improving the region growing 

step of our framework so that it scales similarly to the particle 

extraction step. This could be achieved by developing a scalable 

method of local growing and parallel graph connection to 



segment features. However, applying this method to combustion 

datasets, which are very turbulent and highly interconnected in 

nature, may prove challenging. 

In addition, we plan to extend the particle-based volume 

feature query portion of our framework to track segmented 

features over time. By looking at the trajectories of particles we 

can identify a correspondence between features at different time 

steps. This will allow scientists to not only track the position of 

features, but also to identify how features merge and split apart 

over time.  

Lastly, we plan to implement our framework into the 

combustion simulations directly to allow scientists to perform in 

situ analysis and visualization on their datasets. This is 

especially useful for minimizing storage and I/O overheads when 

dealing with extremely large datasets. 
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