Visualizing Velocity Fields from Fusion Simulations using Advected Particle Trajectories

Franz Sauer¹, Yubo Zhang¹, Weixing Wang², Stephane Ethier², Kwan-Liu Ma¹

¹ University of California at Davis
² Princeton Plasma Physics Laboratory

Introduction

- Understanding velocity fields is important for studying magnetic confinement
- Particle advection is an intuitive tool
- Alone cannot highlight specific features of interest
- Develop a set of mapping, filtering, and projection methods

Overview

- Simulation and Data
- Implementation
- Exploration Techniques
 - Color Functions
 - Filters
 - View Projections
- Conclusion and Future Work

Simulation and Data

- Gyrokinetic Tokamak Simulation (GTS) Code
- Simulate and study turbulence and transport
- Output as a vector field on an unstructured mesh
- Particle advection as a way of reintroducing particle representation
- Time-varying field with 830 timesteps

Implementation

- Preprocessing
 - Convert raw data to a 3D texture
- Particle advection
 - Seed and generate trajectories/calculate filter info
- Visualization
 - Draw illuminated pathlines/realtime interactivity

Exploration Techniques

- Color Functions
 - Toroidal Velocity
 - Flux Normal Velocity
 - Scalar Field Value
- Filters
 - Turns
 - Radial Displacement
 - Entropy
- View Projections
 - Poloidal Cutting Slice
 - Floor Projection
 - Expanded View

Color Functions – Toroidal Velocity

- Velocity projection onto the toroidal direction
- Blue positive toroidal velocity (counter-clockwise)
- White low velocity or perpendicular motion
- Red negative toroidal velocity (clockwise)

Negative Positive

Color Functions – Toroidal Velocity

- Variation of color along trajectory
- Insights into acceleration/deceleration of particle
- Trajectories fade rapidly between red and blue
- Quick acceleration and deceleration when changing direction

Color Functions – Flux Normal Velocity

- Velocity projection onto flux surface normals
- Blue positive flux normal velocity (towards walls)
- White low velocity or motion along flux surface
- Red negative flux normal velocity (away from walls)

Negative Positive

Color Functions – Scalar Field Value

- Color trajectories according to a scalar field value
- Green higher scalar values
- White lower scalar values
- Potential or density fields

Video

Full Torus View – All Trajectories

Filters - Turns

- A measurement of the number of directional changes within a trajectory
- Accumulate the number of "turns" along each trajectory
- One "turn" is a directional change greater than 90 degrees
- Both sudden and gradual directional changes
- Good at highlighting turbulence

Filters - Turns

Low Number of Turns

Filters – Radial Displacement

- A measurement of motion towards or away from the magnetic axis
- Project the displacement vector in the radial direction
- Accumulate the magnitude of the displacement along each trajectory
- Good at highlighting transport into and out of the plasma core

Filters – Radial Displacement

Low Radial Displacement

High Radial Displacement

Filters - Entropy

A measurement of angular variation along the trajectory

•
$$E_A = -\frac{1}{\log_2(m)} \sum_{j=0}^{m-1} \frac{A_j}{L_A} \log_2 \frac{A_j}{L_A}$$

- Perfect circles or straight lines have a low entropy
- Trajectories with a varying angle will have a high entropy
- A different way of highlighting turbulence

Filters - Entropy

View Projections – Poloidal Cutting Slice

- Project trajectories onto a poloidal cutting slice
- Allows user to look along the toroidal direction
- Choose to project from specific toroidal positions
- Highlights radial and poloidal motion

Video

Poloidal Cutting Slice– All Trajectories

View Projections – Poloidal Cutting Slice

Phase 1: Small initial turbulence

Phase 2: Exponential growth in turbulence

Phase 3: Turbulence becomes saturated

Phase 4: Turbulence decreases

View Projections – Drop Projection

- Project trajectories onto a plane below the torus
- Highlights toroidal differences and differences between the high and low field sides
- New insights that are difficult to see in the full torus view

View Projections – Drop Projection

View Projections – Expanded View

- Unfold the torus into a 3D rectangular volume
- Project trajectories accordingly
- Toroidal, radial, and poloidal directions lie along flat axes
- Reduces occlusion

View Projections – Expanded View

Toroidal Coloring - Slice

Flux Normal Coloring - Volume

Conclusions and Future Work

- We develop a number of visualization tools to help understand features in flow fields
 - Color functions
 - Filters
 - View projections
- In situ implementations
 - Construct high resolution flow lines
 - Apply filtering techniques
- Better incorporate other data types (scalar data)

Thank you for your time