

Fast Uncertainty-driven Large-scale Volume Feature Extraction on Desktop PCs

Jinrong Xie, Franz Sauer, Kwan-Liu Ma

Introduction: Feature Extraction

- Extensively used in visualization and analysis
 - Explore physical quantities
 - Distinguish/isolate patterns
 - Data reduction
- Large-scale datasets?

Introduction: Large-scale Data

- Drawbacks of distributed computing environments
 - Low interactivity
 - Compete over resources
 - Limited control over tools
- Can we leverage desktop PCs in new ways to handle large-scale data?

Introduction: Overview

- Balance between accuracy and performance
- Hybrid technique
 - Multiresolution advantages of supervoxels
 - Uncertainty-based refinement
 - GPU accelerated SLIC

Background: SLIC

- Simple Linear Iterative Clustering (SLIC)*
- K-means based
- Limited search area
- Predefined cluster centers
 - Pixel values
 - Location to center

*Achanta et al. 2011

Methods: Supervoxel Generation

- Similar to down-sampling
- Compute relevant information
 - Average intensity
 - Standard deviation
- Use GPU acceleration
 - Supervoxel independence
 - Out-of-core if necessary

Methods: Supervoxel Clustering

- Extend SLIC to 3D volumes
- Seed initial cluster centers
- User controlled weights
 - Scalar data values
 - Euclidean distance
- Use GPU acceleration

$$d_{i,k} = w_1 \|c_k - v_i\|_2 + w_2 \|I_k - I_i\|_2$$

Methods: Hierarchical Merging

- SLIC tends to over segment the volume
 - Number of clusters is fixed
 - Redundant clusters in homogenous regions
- Need to merge clusters
- Need to determine topological connectivity

Methods: Hierarchical Merging

- Running template
- Construct a graph
 - Nodes \rightarrow clusters; edges \rightarrow neighbors
 - Adjacency matrix

Methods: Hierarchical Merging

• Merge nodes in graph if they are too similar

10

Methods: Uncertainty-based Refinement

- Only refine supervoxels with high uncertainty
- Fetch necessary raw data
- Re-cluster new voxels
- Performance vs. accuracy

Results: Combustion Dataset

- S3D, Sandia National Labs
- Highly turbulent and complex features
- 704 x 540 x 550
- Mixture fraction variable

Results: Combustion Dataset

Results: Combustion Dataset

- Investigate uncertaintybased refinement
- Achieve results that closely match full resolution volume

Volume colored by uncertainty

Full resolution volume

Results: Ocean Dataset

- POP model, NOAA Geophysical Fluid Dynamics Lab
- Turbulent mixing
- 3600 x 2400 x 42
- Flow velocity mag.

Results: Flow Dataset

- Flow simulation, Argonne National Laboratory
- Columnar and stratified structures of Boussinesq flows
- 4096 x 4096 x 4096
- Vorticity variable

ory sinesq

Combustion Dataset (512 clusters)

Optimum: SV Size: 17^3 Total Time: 187 ms

Combustion Dataset Extraction

• Ocean Dataset (400 clusters)

Optimum: SV Size: 19³ Total Time: 2299 *ms*

- Combustion and ocean easily manageable
- Flow dataset?
 - Hundreds of GB per timestep
 - Large I/O cost
- In situ supervoxel generation

19

• Emulate in situ case (Titan)

In Situ Supervoxel Generation

20

• Flow Dataset (1000 clusters)

Flow Dataset Extraction

Optimum: SV Size: 10³ Total Time: 9159 *ms*

Conclusion

- Develop a hybrid feature extraction technique
 - Multiresolution advantages of supervoxels
 - Uncertainty-based refinement
 - GPU accelerated SLIC
- Control over performance and accuracy
- Can interactively handle large datasets on a desktop PC

Acknowledgements

- Data sets:
 - Sandia National Laboratory
 - National Oceanic and Atmospheric Administration
 - Argonne National Laboratory
- Funding sources:
 - U.S. National Science Foundation via grants NSF DRL-1323214 and NSF IIS-1320229
 - U.S. Department of Energy via grants DE-SC0005334, DE-FC02-12ER26072, and DE-SC0012610

Thank You Questions?