Spatio-temporal Feature Exploration in Combined Particle/Volume Reference Frames

Franz Sauer and Kwan-Liu Ma VIDI Labs – University of California, Davis

Introduction: Problem Statement

- More scientific simulations are using multiple data representations
 - Volume-based (Eulerian) representation
 - Particle-based (Lagrangian) representation
- Limited work on combining the advantages of each for visualization and analysis purposes
- How can we...
 - ...explore the spatial and temporal interplay between each data type?
 - ...represent information from each data type simultaneously?

Introduction	Background	Methods	Results	
Introduction	Duckground	Trictitous	incourts	

Background: Eulerian/Lagrangian Reference Frames

- Eulerian representation (volume data)
 - Record information on a fixed grid
 - Easy to analyze fluctuations at specific locations
 - Must use interpolation between grid points
- Lagrangian representation (particle data)
 - Follow the motion of discrete parcels throughout a domain
 - Spatial evolution adds a new perspective (trajectory geometry)
 - Particles may not always be present in certain locations
- Use spatial proximity to connect particles with volume cells
- Use a "spatio-temporal origin" in one data type and explore a temporal window in the other data type

Methods: Spatio-temporal Neighborhood Extraction

Using the Eulerian (volume) reference frame as a spatio-temporal origin:

Incloadection Dackground Methods Results	Introduction	Background	Methods	Results	_
--	--------------	------------	---------	---------	---

Methods: Spatio-temporal Neighborhood Extraction

Using the Lagrangian (particle) reference frame as a spatio-temporal origin:

Introduction	Background	Methods	Results
--------------	------------	---------	---------

Methods: Spatio-temporal Segmentation

- Propagate segmentation from one frame to another
- Example: segmenting a volume feature using trajectory geometry
- 1. Cluster trajectories based on geometry
- 2. Propagate clusters to spatio-temporal origin
- 3. Fill in gaps using region growing

Can also be done in reverse (segment trajectory using volume data)

Methods: Visual Representations

- How to visually depict each type of spatio-temporal feature?
 - Using a volume feature as an origin: can draw both components simultaneously
 - Using a trajectory as an origin: need something new

Results: Combustion Dataset

- S3D Combustion Simulation by Sandia National Labs
 - Study combustion phenomena like autoignition
 - Design of next generation high efficiency engines
- Particle Data
 - Record chemical mass fractions (OH⁻)
 - Massless tracers
- Volume Data
 - Scalar/vector fields (structured)
 - Topological flow classifications

Focusing compressing unstable (FC/U) -

Focusing stretching stable (FS/S) <

Introduction Background Methods Results

Results: Combustion Dataset

Introduction	Background	Methods	Results	[

Results: Accelerator Dataset

- ACE3P Simulation by SLAC National Accelerator Laboratory
 - Study electromagnetic dynamics in particle accelerators
 - Dark current in cryomodule devices
- Particle Data
 - Motion of charged particles
 - Emitted from surfaces
- Volume Data
 - Vector field (unstructured)
 - Electromagnetic field

Results: Accelerator Dataset

Discussion: Summary

- Explore spatio-temporal interplay between particle and volume data
 - Extract spatio-temporal neighborhoods
 - Extend this technique to propagate segmentation results
 - Design a new visual representation
- Becoming a necessity as more simulations take advantage of both representations
 - Researchers need to study systems from new perspectives
 - Gain a complete understanding of all aspects of their data

Introduction	Background	Methods	Results	

Thank You **Questions?**

Special thanks to:

- Our collaborators at Sandia National Laboratory
- Our collaborators at SLAC National Accelerator Laboratory
- U.S. Department of Energy •
- U.S. National Science Foundation

